Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael Bolte,^a* Vasiliy Brusko^b† and Volker Böhmer^b

^aInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bFachbereich Chemie und Pharmazie, Abteilung Lehramt Chemie, Johannes-Gutenberg-Universität, Duisbergweg 10-14, 55099 Mainz, Germany

+ Permanent address: Chemical Department, Kazan State University, Kremlevskaya St. 18, 420008 Kazan, Russia

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.043 wR factor = 0.111 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A new pseudopolymorph of 5,11,17,23,-29,35,41,47-octabromo-49,50,51,52,53,-54,55,56-octamethoxycalix[8]arene

Crystals of the title calixarene containing CCl_4 as solvent have already been investigated [Baudry, Felix, Bavoux, Perrin, Vocanson, Dumazet-Bonnamour & Lamartine (2003). New J. Chem. pp. 1540–1543]. We present here a new pseudopolymorph of this compound, $C_{64}H_{56}Br_8O_8 \cdot 2C_4H_8O$, containing tetrahydrofuran as solvent and crystallizing in a different space group. However, the molecular conformation of both molecules is very similar. Further similarities of both structures are that the calixarene molecules are located on a centre of inversion and that the solvent molecules occupy similar positions with respect to the calixarene molecules. Received 2 October 2003 Accepted 7 October 2003 Online 15 October 2003

Comment

Recently, Baudry et al. (2003) published the crystal structure 5,11,17,23,29,35,41,47-octabromo-49,50,51,52,53,54,55,56of octamethoxycalix[8]arene containing CCl₄ as solvent in the monoclinic space group C2/c, named (Ib) hereafter. We have obtained crystals of the same compound with tetrahydrofuran as solvent, (I). Interestingly, the space group is still monoclinic, but no longer centred, viz. $P2_1/n$. However, the molecular conformation of (I) does not change significantly. A leastsquares fit of both structures (fitting the eight methylene C atoms) is shown in Fig. 2. A comparison of equivalent torsion angles is given in Table 1. A further similarity of both structures is that the calixarene molecules are located on a centre of inversion with just half a molecule in the asymmetric unit. Even the solvent molecules are located in similar positions with respect to the calixarene molecules as can be seen from Figs. 3 and 4.

Experimental

Compound (I) was prepared by *O*-methylation of *p*-bromocalix[8]arene with methyl iodide in tetrahydrofuran (Böhmer *et al.*, 2002). Single crystals were obtained by slow evaporation of a solution in tetrahydrofuran.

Crystal data

$C_{64}H_{56}Br_8O_8 \cdot 2C_4H_8O$	$D_x = 1.603 \text{ Mg m}^{-3}$
$M_r = 1736.58$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 30 238
a = 9.0636 (7) Å	reflections
b = 26.2897 (15) Å	$\theta = 1.9-25.3^{\circ}$
c = 15.1205 (11) Å	$\mu = 4.52 \text{ mm}^{-1}$
$\beta = 93.287 \ (6)^{\circ}$	T = 293 (2) K
$V = 3597.0 (4) \text{ Å}^3$	Block, colourless
Z = 2	$0.57 \times 0.54 \times 0.52 \text{ mm}$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Perspective view of (I), with the atom-numbering scheme (only the symmetry-independent atoms are labelled). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

CPK representation of (I), showing the position of the THF molecules with respect to the calixarene molecule. H atoms have been omitted. Colour code: C (except the THF C atoms) grey, Br green, Cl yellow, and O red. The C atoms of the THF molecules are drawn in blue.

Figure 2

Least-squares fit of (I) (dotted lines) and (Ib) (full lines).

Data collection

Stoe IPDS-II two-circle	6572 independent reflections
diffractometer	4601 reflections with $I > 2\sigma$
ω scans	$R_{\rm int} = 0.109$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.4^{\circ}$
(MULABS; Spek, 1990; Blessing,	$h = -10 \rightarrow 10$
1995)	$k = -31 \rightarrow 31$
$T_{\min} = 0.086, T_{\max} = 0.094$	$l = -18 \rightarrow 18$
56 958 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.111$ S=0.966572 reflections 406 parameters

(I)

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0614P)^{2}]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Figure 4

CPK representation of (Ib), showing the position of the CCl₄ molecule with respect to the calixarene molecule; only the main conformation of the disordered Cl atoms is shown. H atoms have been omitted. Colour code: C grey, Br green, Cl yellow, and O red.

Table 1

Comparison of the torsion angles ($^{\circ}$) of (I) and (Ib).

	Compound (I)	Compound (Ib)
C42-C41-C4-C33	-146.0 (4)	-144.3
C41-C4-C33-C32	73.1 (5)	72.6
C32-C31-C3-C23	-134.6(4)	-136.2
C31-C3-C23-C22	83.3 (5)	92.1
C22-C21-C2-C13	86.2 (5)	95.5
C21-C2-C13-C12	-164.3(4)	-174.9
C12-C11-C1-C43i	110.3 (5)	92.9
C11-C1-C43 ⁱ -C42 ⁱ	-175.2 (4)	-165.3

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

H atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ and } U_{iso}(H) = 1.5U_{eq}(C_{methyl})]$ using a riding model, with aromatic C-H = 0.93 Å, methyl C-H = 0.96 Å and methylene C-H = 0.97 Å. The distances in the tetrahydrofuran molecule were restrained to 1.40 (1) and 1.55 (1) Å for C-O and C-C, respectively.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990). These studies were supported by the BMBF (03N 6500) in the framework of the Center for Multifunctional Materials and Miniaturized Devices.

References

- Baudry, R., Felix, C., Bavoux, C., Perrin, M., Vocanson, F., Dumazet-Bonnamour, I. & Lamartine, R. (2003). New J. Chem. 9, 1540–1543.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Böhmer, V., Brusko, V. & Rissanen, K. (2002). Synthesis, pp. 1898-1902.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.